Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(31): eadg8866, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540741

RESUMEN

Lupins are high-protein crops that are rapidly gaining interest as hardy alternatives to soybean; however, they accumulate antinutritional alkaloids of the quinolizidine type (QAs). Lupin domestication was enabled by the discovery of genetic loci conferring low QA levels (sweetness), but the precise identity of the underlying genes remains uncertain. We show that pauper, the most common sweet locus in white lupin, encodes an acetyltransferase (AT) unexpectedly involved in the early QA pathway. In pauper plants, a single-nucleotide polymorphism (SNP) strongly impairs AT activity, causing pathway blockage. We corroborate our hypothesis by replicating the pauper chemotype in narrow-leafed lupin via mutagenesis. Our work adds a new dimension to QA biosynthesis and establishes the identity of a lupin sweet gene for the first time, thus facilitating lupin breeding and enabling domestication of other QA-containing legumes.


Asunto(s)
Lupinus , Fitomejoramiento , Mutación , Hojas de la Planta/genética , Lupinus/genética , Lupinus/metabolismo , Sitios Genéticos
2.
Hortic Res ; 9: uhac180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338848

RESUMEN

Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.

3.
Theor Appl Genet ; 134(10): 3411-3426, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34258645

RESUMEN

KEY MESSAGE: A plant-specific Trimethylguanosine Synthase1-like homologue was identified as a candidate gene for the efl mutation in narrow-leafed lupin, which alters phenology by reducing vernalisation requirement. The vernalisation pathway is a key component of flowering time control in plants from temperate regions but is not well understood in the legume family. Here we examined vernalisation control in the temperate grain legume species, narrow-leafed lupin (Lupinus angustifolius L.), and discovered a candidate gene for an ethylene imine mutation (efl). The efl mutation changes phenology from late to mid-season flowering and additionally causes transformation from obligate to facultative vernalisation requirement. The efl locus was mapped to pseudochromosome NLL-10 in a recombinant inbred line (RIL) mapping population developed by accelerated single seed descent. Candidate genes were identified in the reference genome, and a diverse panel of narrow-leafed lupins was screened to validate mutations specific to accessions with efl. A non-synonymous SNP mutation within an S-adenosyl-L-methionine-dependent methyltransferase protein domain of a Trimethylguanosine Synthase1-like (TGS1) orthologue was identified as the candidate mutation giving rise to efl. This mutation caused substitution of an amino acid within an established motif at a position that is otherwise highly conserved in several plant families and was perfectly correlated with the efl phenotype in F2 and F6 genetic population and a panel of diverse accessions, including the original efl mutant. Expression of the TGS1 homologue did not differ between wild-type and efl genotypes, supporting altered functional activity of the gene product. This is the first time a TGS1 orthologue has been associated with vernalisation response and flowering time control in any plant species.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genética de Población , Lupinus/crecimiento & desarrollo , Metiltransferasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Flores/genética , Lupinus/genética , Metiltransferasas/genética , Mutación , Fenotipo , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/genética
4.
Plants (Basel) ; 10(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668258

RESUMEN

Low temperature inhibits rapid germination and successful seedling establishment of rapeseed (Brassica napus L.), leading to significant productivity losses. Little is known about the genetic diversity for seed vigor under low-temperature conditions in rapeseed, which motivated our investigation of 13 seed germination- and emergence-related traits under normal and low-temperature conditions for 442 diverse rapeseed accessions. The stress tolerance index was calculated for each trait based on performance under non-stress and low-temperature stress conditions. Principal component analysis of the low-temperature stress tolerance indices identified five principal components that captured 100% of the seedling response to low temperature. A genome-wide association study using ~8 million SNP (single-nucleotide polymorphism) markers identified from genome resequencing was undertaken to uncover the genetic basis of seed vigor related traits in rapeseed. We detected 22 quantitative trait loci (QTLs) significantly associated with stress tolerance indices regarding seed vigor under low-temperature stress. Scrutiny of the genes in these QTL regions identified 62 candidate genes related to specific stress tolerance indices of seed vigor, and the majority were involved in DNA repair, RNA translation, mitochondrial activation and energy generation, ubiquitination and degradation of protein reserve, antioxidant system, and plant hormone and signal transduction. The high effect variation and haplotype-based effect of these candidate genes were evaluated, and high priority could be given to the candidate genes BnaA03g40290D, BnaA06g07530D, BnaA09g06240D, BnaA09g06250D, and BnaC02g10720D in further study. These findings should be useful for marker-assisted breeding and genomic selection of rapeseed to increase seed vigor under low-temperature stress.

5.
Plants (Basel) ; 9(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752081

RESUMEN

We present the first genetic map of tedera (Bituminaria bituminosa (L.) C.H. Stirton), a drought-tolerant forage legume from the Canary Islands with useful pharmaceutical properties. It is also the first genetic map for any species in the tribe Psoraleeae (Fabaceae). The map comprises 2042 genotyping-by-sequencing (GBS) markers distributed across 10 linkage groups, consistent with the haploid chromosome count for this species (n = 10). Sequence tags from the markers were used to find homologous matches in the genome sequences of the closely related species in the Phaseoleae tribe: soybean, common bean, and cowpea. No tedera linkage groups align in their entirety to chromosomes in any of these phaseoloid species, but there are long stretches of collinearity that could be used in tedera research for gene discovery purposes using the better-resourced phaseoloid species. Using Ks analysis of a tedera transcriptome against five legume genomes provides an estimated divergence time of 17.4 million years between tedera and soybean. Genomic information and resources developed here will be invaluable for breeding tedera varieties for forage and pharmaceutical purposes.

7.
Theor Appl Genet ; 133(10): 2975-2987, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32683474

RESUMEN

The transformation of wild plants into domesticated crops usually modifies a common set of characters referred to as 'domestication syndrome' traits such as the loss of pod shattering/seed dehiscence, loss of seed dormancy, reduced anti-nutritional compounds and changes in growth habit, phenology, flower and seed colour. Understanding the genetic control of domestication syndrome traits facilitates the efficient transfer of useful traits from wild progenitors into crops through crossing and selection. Domesticated forms of yellow lupin (Lupinus luteus L.) possess many domestication syndrome traits, while their genetic control remains a mystery. This study aimed to reveal the genetic control of yellow lupin domestication traits. This involved phenotypic characterisation of those traits, defining the genomic regions controlling domestication traits on a linkage map and performing a comparative genomic analysis of yellow lupin with its better-understood relatives, narrow-leafed lupin (L. angustifolius L.) and white lupin (L. albus L.). We phenotyped an F9 recombinant inbred line (RIL) population of a wide cross between Wodjil (domesticated) × P28213 (wild). Vernalisation responsiveness, alkaloid content, flower and seed colour in yellow lupin were each found to be controlled by single loci on linkage groups YL-21, YL-06, YL-03 and YL-38, respectively. Aligning the genomes of yellow with narrow-leafed lupin and white lupin revealed well-conserved synteny between these sister species (76% and 71%, respectively). This genomic comparison revealed that one of the key domestication traits, vernalisation-responsive flowering, mapped to a region of conserved synteny with the vernalisation-responsive flowering time Ku locus of narrow-leafed lupin, which has previously been shown to be controlled by an FT homologue. In contrast, the loci controlling alkaloid content were each found at non-syntenic regions among the three species. This provides a first glimpse into the molecular control of flowering time in yellow lupin and demonstrates both the power and the limitation of synteny as a tool for gene discovery in lupins.


Asunto(s)
Mapeo Cromosómico , Domesticación , Genoma de Planta , Lupinus/genética , Color , Flores , Genotipo , Lupinus/clasificación , Fenotipo , Sintenía
8.
BMC Genet ; 20(1): 68, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412771

RESUMEN

BACKGROUND: Yellow lupin (Lupinus luteus L.) is a promising grain legume for productive and sustainable crop rotations. It has the advantages of high tolerance to soil acidity and excellent seed quality, but its current yield potential is poor, especially in low rainfall environments. Key adaptation traits such as phenology and enhanced stress tolerance are often complex and controlled by several genes. Genomic-enabled technologies may help to improve our basic understanding of these traits and to provide selective markers in breeding. However, in yellow lupin there are very limited genomic resources to support research and no published information is available on the genetic control of adaptation traits. RESULTS: We aimed to address these deficiencies by developing the first linkage map for yellow lupin and conducting quantitative trait locus (QTL) analysis of yield under well-watered (WW) and water-deficit (WT) conditions. Two next-generation sequencing marker approaches - genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) sequencing - were employed to genotype a recombinant inbred line (RIL) population developed from a bi-parental cross between wild and domesticated parents. A total of 2,458 filtered single nucleotide polymorphism (SNP) and presence / absence variation (PAV) markers were used to develop a genetic map comprising 40 linkage groups, the first reported for this species. A number of significant QTLs controlling total biomass and 100-seed weight under two water (WW and WD) regimes were found on linkage groups YL-03, YL-09 and YL-26 that together explained 9 and 28% of total phenotypic variability. QTLs associated with length of the reproductive phase and time to flower were found on YL-01, YL-21, YL-35 and YL-40 that together explained a total of 12 and 44% of total phenotypic variation. CONCLUSION: These genomic resources and the QTL information offer significant potential for use in marker-assisted selection in yellow lupin.


Asunto(s)
Mapeo Cromosómico , Productos Agrícolas/genética , Grano Comestible/genética , Lupinus/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Análisis de Varianza , Ligamiento Genético , Marcadores Genéticos , Genotipo , Endogamia , Fenotipo , Fitomejoramiento
9.
BMC Genomics ; 20(1): 385, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101009

RESUMEN

BACKGROUND: Narrow-leafed lupin is an emerging crop of significance in agriculture, livestock feed and human health food. However, its susceptibility to various diseases is a major obstacle towards increased adoption. Sclerotinia sclerotiorum and Botrytis cinerea - both necrotrophs with broad host-ranges - are reported among the top 10 lupin pathogens. Whole-genome sequencing and comparative genomics are useful tools to discover genes responsible for interactions between pathogens and their hosts. RESULTS: Genomes were assembled for one isolate of B. cinerea and two isolates of S. sclerotiorum, which were isolated from either narrow-leafed or pearl lupin species. Comparative genomics analysis between lupin-derived isolates and others isolated from alternate hosts was used to predict between 94 to 98 effector gene candidates from among their respective non-conserved gene contents. CONCLUSIONS: Detection of minor differences between relatively recently-diverged isolates, originating from distinct regions and with hosts, may highlight novel or recent gene mutations and losses resulting from host adaptation in broad host-range fungal pathogens.


Asunto(s)
Adaptación Fisiológica , Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Lupinus/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/patogenicidad , Botrytis/patogenicidad , Especificidad del Huésped , Virulencia , Secuenciación Completa del Genoma
10.
Plant Cell Environ ; 42(1): 6-19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29603775

RESUMEN

Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty.


Asunto(s)
Cambio Climático , Productos Agrícolas/genética , Fabaceae/genética , Genómica , Productos Agrícolas/crecimiento & desarrollo , Fabaceae/crecimiento & desarrollo , Genes de Plantas/genética , Genes de Plantas/fisiología , Genómica/métodos , Fitomejoramiento/métodos
11.
Plant Cell Environ ; 42(1): 174-187, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677403

RESUMEN

Narrow-leafed lupin (Lupinus angustifolius L.) cultivation was transformed by 2 dominant vernalization-insensitive, early flowering time loci known as Ku and Julius (Jul), which allowed expansion into shorter season environments. However, reliance on these loci has limited genetic and phenotypic diversity for environmental adaptation in cultivated lupin. We recently predicted that a 1,423-bp deletion in the cis-regulatory region of LanFTc1, a FLOWERING LOCUS T (FT) homologue, derepressed expression of LanFTc1 and was the underlying cause of the Ku phenotype. Here, we surveyed diverse germplasm for LanFTc1 cis-regulatory variation and identified 2 further deletions of 1,208 and 5,162 bp in the 5' regulatory region, which overlap the 1,423-bp deletion. Additionally, we confirmed that no other polymorphisms were perfectly associated with vernalization responsiveness. Phenotyping and gene expression analyses revealed that Jul accessions possessed the 5,162-bp deletion and that the Jul and Ku deletions were equally capable of removing vernalization requirement and up-regulating gene expression. The 1,208-bp deletion was associated with intermediate phenology, vernalization responsiveness, and gene expression and therefore may be useful for expanding agronomic adaptation of lupin. This insertion/deletion series may also help resolve how the vernalization response is mediated at the molecular level in legumes.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/genética , Mutación INDEL/genética , Lupinus/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Variación Genética/genética , Mutación INDEL/fisiología , Desequilibrio de Ligamiento/genética , Lupinus/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Estaciones del Año
12.
Plant Phenomics ; 2019: 3264872, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33313525

RESUMEN

Oilseed Brassica species are vulnerable to heat and drought stress, especially in the early reproductive stage. We evaluated plant imaging of whole plant and flower tissue, leaf stomatal conductance, leaf and bud temperature, photochemical reflectance index, quantum yield of photosynthesis, and leaf gas exchange for their suitability to detect tolerance to heat (H) and/or drought (D) stress treatments in 12 Brassica genotypes (G). A replicated factorial experiment was set up with 7 d of stress treatment from the beginning of anthesis with various levels of three factors H, D, and G. Most phenomics tools detected plant stress as indicated by significant main effects of H, D, and H×D. Whole plant volume was highly correlated with fresh weight changes, suggesting that whole plant imaging may be a useful surrogate for fresh weight in future studies. Vcmax, the maximum carboxylation rate of photosynthesis, increased rapidly on day 1 in H and H+D treatments, and there were significant interactions of G×H and G×D. Vcmax of genotypes on day 1 in H and H+D treatments was positively correlated with their harvested seed yield. Vcmax on day 1 and day 3 were clustered with seed yield in H and H+D treatments as shown in the heatmaps of genotypic correlations. TPU, the rate of triose phosphate use, also showed significant positive genotypic correlations with seed yield in H+D treatments. Flower volume showed significant interactions of G×H and G×D on day 7, and flower volume of genotypes on day 7 in H was positively correlated with their harvested seed yield. There were few interactions of G×H or G×D for leaf stomatal conductance, leaf and bud temperature, photochemical reflectance index, and quantum yield of photosynthesis. Vcmax, TPU, and volume of flowers are potential nondestructive phenomic traits for heat or combined heat and drought stress tolerance screening in Brassica germplasm.

13.
Theor Appl Genet ; 131(12): 2543-2554, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30225643

RESUMEN

KEY MESSAGE: This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication. The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today's crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.


Asunto(s)
Evolución Biológica , Variación Genética , Genética de Población , Genoma de Planta , Lupinus/genética , Productos Agrícolas/genética , Domesticación , Desequilibrio de Ligamiento , Región Mediterránea , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética
14.
Theor Appl Genet ; 131(4): 887-901, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29353413

RESUMEN

KEY MESSAGE: This first pan-Mediterranean analysis of genetic diversity in wild narrow-leafed lupin revealed strong East-West genetic differentiation of populations, an historic eastward migration, and signatures of genetic adaptation to climatic variables. Most grain crops suffer from a narrow genetic base, which limits their potential for adapting to new challenges such as increased stresses associated with climate change. Plant breeders are returning to the wild ancestors of crops and their close relatives to broaden the genetic base of their crops. Understanding the genetic adaptation of these wild relatives will help plant breeders most effectively use available wild diversity. Here, we took narrow-leafed lupin (Lupinus angustifolius L.) as a model to understand adaptation in a wild crop ancestor. A set of 142 wild accessions of narrow-leafed lupin from across the Mediterranean basin were subjected to genotyping-by-sequencing using Diversity Arrays Technology. Phylogenetic, linkage disequilibrium and demographic analyses were employed to explore the history of narrow-leafed lupin within the Mediterranean region. We found strong genetic differentiation between accessions from the western and eastern Mediterranean, evidence of an historic West to East migration, and that eastern Mediterranean narrow-leafed lupin experienced a severe and recent genetic bottleneck. We showed that these two populations differ for flowering time as a result of local adaptation, with the West flowering late while the East flowers early. A genome-wide association study identified single nucleotide polymorphism markers associated with climatic adaptation. Resolving the origin of wild narrow-leafed lupin and how its migration has induced adaptation to specific regions of the Mediterranean serves as a useful resource not only for developing narrow-leafed lupin cultivars with greater resilience to a changing climate, but also as a model which can be applied to other legumes.


Asunto(s)
Variación Genética , Lupinus/genética , Adaptación Biológica/genética , Flores/fisiología , Estudios de Asociación Genética , Marcadores Genéticos , Genética de Población , Genoma de Planta , Genotipo , Desequilibrio de Ligamiento , Región Mediterránea , Filogenia , Polimorfismo de Nucleótido Simple
15.
Theor Appl Genet ; 131(2): 333-351, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29071392

RESUMEN

KEY MESSAGE: We report a linkage map for Apios americana and describe synteny with selected warm-season legumes. A translocation event in common bean and soybean is confirmed against Apios and Vigna species. Apios (Apios americana; "apios"), a tuberous perennial legume in the Phaseoleae tribe, was widely used as a food by Native Americans. Work in the last 40 years has led to several improved breeding lines. Aspects of the pollination biology (complex floral structure and tripping mechanism) have made controlled crosses difficult, and the previous reports indicated that the plant is likely primarily an outcrosser. We used a pseudo-testcross strategy to construct a genetic map specific to the maternal parent. The map was built using single-nucleotide polymorphism markers identified by comparing the expressed sequences of individuals in the mapping population against a de novo maternal reference transcriptome assembly. The apios map consists of 11 linkage groups and 1121 recombinationally distinct loci, covering ~ 938.6 cM. By sequencing the transcriptomes of all potential pollen parents, we were able to identify the probable pollen donors and to discover new aspects of the pollination biology in apios. No selfing was observed, but multiple pollen parents were seen within individual pods. Comparisons with genome sequences in other species in the Phaseoleae showed extended synteny for most apios linkage groups. This synteny supports the robustness of the map, and also sheds light on the history of the Phaseoleae, as apios is relatively early diverging in this tribe. We detected a translocation event that separates apios and two Vigna species from Phaseolus vulgaris and Glycine max. This apios mapping work provides a general protocol for sequencing-based construction of high-density linkage maps in outcrossing species with heterogeneous pollen parents.


Asunto(s)
Fabaceae/genética , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sintenía , Transcriptoma , Mapeo Cromosómico , Phaseolus/genética , Glycine max/genética , Vigna/genética
16.
Sci Rep ; 7(1): 15335, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127429

RESUMEN

White lupin (Lupinus albus L.) is a valuable source of seed protein, carbohydrates and oil, but requires genetic improvement to attain its agronomic potential. This study aimed to (i) develop a new high-density consensus linkage map based on new, transcriptome-anchored markers; (ii) map four important agronomic traits, namely, vernalization requirement, seed alkaloid content, and resistance to anthracnose and Phomopsis stem blight; and, (iii) define regions of synteny between the L. albus and narrow-leafed lupin (L. angustifolius L.) genomes. Mapping of white lupin quantitative trait loci (QTLs) revealed polygenic control of vernalization responsiveness and anthracnose resistance, as well as a single locus regulating seed alkaloid content. We found high sequence collinearity between white and narrow-leafed lupin genomes. Interestingly, the white lupin QTLs did not correspond to previously mapped narrow-leafed lupin loci conferring vernalization independence, anthracnose resistance, low alkaloids and Phomopsis stem blight resistance, highlighting different genetic control of these traits. Our suite of allele-sequenced and PCR validated markers tagging these QTLs is immediately applicable for marker-assisted selection in white lupin breeding. The consensus map constitutes a platform for synteny-based gene cloning approaches and can support the forthcoming white lupin genome sequencing efforts.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Genoma de Planta , Lupinus/genética , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo , Fitomejoramiento
17.
Plant Mol Biol Report ; 35(4): 416-430, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28751801

RESUMEN

Production of oilseed rape/canola (Brassica napus) is increasingly threatened by dry conditions while the demand for vegetable oil is increasing. Brassica rapa is a genetically diverse ancestor of B. napus, and is readily crossed with B. napus. Recently, we reported promising levels of drought tolerance in a wild type of B. rapa which could be a source of drought tolerance for B. napus. We analysed global gene expression by messenger RNA sequencing in seedlings of the drought-tolerant and a drought-sensitive genotype of B. rapa under simulated drought stress and control conditions. A subset of stress-response genes were validated by reverse transcription quantitative PCR. Gene ontology enrichment analysis and pathway enrichment analysis revealed major differences between the two genotypes in the mode and onset of stress responses in the first 12 h of treatment. Drought-tolerant plants reacted uniquely and rapidly by upregulating genes associated with jasmonic acid and salicylic acid metabolism, as well as genes known to cause endoplasmic reticulum stress and induction of programmed cell death. Conversely, active responses in drought-sensitive plants were delayed until 8 or 12 h after stress application. The results may help to identify biomarkers for selection of breeding materials with potentially improved drought tolerance.

18.
New Phytol ; 213(1): 220-232, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27418400

RESUMEN

Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.


Asunto(s)
Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Lupinus/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , Genes de Plantas , Marcadores Genéticos , Mutación INDEL/genética , Desequilibrio de Ligamiento/genética , Lupinus/genética , Motivos de Nucleótidos/genética , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
19.
Plant Biotechnol J ; 15(3): 318-330, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27557478

RESUMEN

Lupins are important grain legume crops that form a critical part of sustainable farming systems, reducing fertilizer use and providing disease breaks. It has a basal phylogenetic position relative to other crop and model legumes and a high speciation rate. Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is gaining popularity as a health food, which is high in protein and dietary fibre but low in starch and gluten-free. We report the draft genome assembly (609 Mb) of NLL cultivar Tanjil, which has captured >98% of the gene content, sequences of additional lines and a dense genetic map. Lupins are unique among legumes and differ from most other land plants in that they do not form mycorrhizal associations. Remarkably, we find that NLL has lost all mycorrhiza-specific genes, but has retained genes commonly required for mycorrhization and nodulation. In addition, the genome also provided candidate genes for key disease resistance and domestication traits. We also find evidence of a whole-genome triplication at around 25 million years ago in the genistoid lineage leading to Lupinus. Our results will support detailed studies of legume evolution and accelerate lupin breeding programmes.


Asunto(s)
Genoma de Planta/genética , Lupinus/genética , Lupinus/microbiología , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Proteínas de Plantas/fisiología , Poliploidía , Sintenía/genética
20.
BMC Genomics ; 17(1): 820, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769166

RESUMEN

BACKGROUND: The Arabidopsis FLOWERING LOCUS T (FT) gene, a member of the phosphatidylethanolamine binding protein (PEBP) family, is a major controller of flowering in response to photoperiod, vernalization and light quality. In legumes, FT evolved into three, functionally diversified clades, FTa, FTb and FTc. A milestone achievement in narrow-leafed lupin (Lupinus angustifolius L.) domestication was the loss of vernalization responsiveness at the Ku locus. Recently, one of two existing L. angustifolius homologs of FTc, LanFTc1, was revealed to be the gene underlying Ku. It is the first recorded involvement of an FTc homologue in vernalization. The evolutionary basis of this phenomenon in lupin has not yet been deciphered. RESULTS: Bacterial artificial chromosome (BAC) clones carrying LanFTc1 and LanFTc2 genes were localized in different mitotic chromosomes and constituted sequence-specific landmarks for linkage groups NLL-10 and NLL-17. BAC-derived superscaffolds containing LanFTc genes revealed clear microsyntenic patterns to genome sequences of nine legume species. Superscaffold-1 carrying LanFTc1 aligned to regions encoding one or more FT-like genes whereas superscaffold-2 mapped to a region lacking such a homolog. Comparative mapping of the L. angustifolius genome assembly anchored to linkage map localized superscaffold-1 in the middle of a 15 cM conserved, collinear region. In contrast, superscaffold-2 was found at the edge of a 20 cM syntenic block containing highly disrupted collinearity at the LanFTc2 locus. 118 PEBP-family full-length homologs were identified in 10 legume genomes. Bayesian phylogenetic inference provided novel evidence supporting the hypothesis that whole-genome and tandem duplications contributed to expansion of PEBP-family genes in legumes. Duplicated genes were subjected to strong purifying selection. Promoter analysis of FT genes revealed no statistically significant sequence similarity between duplicated copies; only RE-alpha and CCAAT-box motifs were found at conserved positions and orientations. CONCLUSIONS: Numerous lineage-specific duplications occurred during the evolution of legume PEBP-family genes. Whole-genome duplications resulted in the origin of subclades FTa, FTb and FTc and in the multiplication of FTa and FTb copy number. LanFTc1 is located in the region conserved among all main lineages of Papilionoideae. LanFTc1 is a direct descendant of ancestral FTc, whereas LanFTc2 appeared by subsequent duplication.


Asunto(s)
Lupinus/genética , Familia de Multigenes , Proteínas de Unión a Fosfatidiletanolamina/genética , Mapeo Cromosómico , Evolución Molecular , Perfilación de la Expresión Génica , Ligamiento Genético , Genoma de Planta , Genómica , Lupinus/clasificación , Filogenia , Regiones Promotoras Genéticas , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...